Generic to update a nowcaster
object with new data
Usage
# S3 method for class 'nowcaster'
update(
object,
new_data,
now = NULL,
refresh = 250 * rlang::is_interactive(),
...
)
Arguments
- object
A
nowcaster
object generated bynowcast()
- new_data
New
.disease_data
to use for fittingnowcast()
. Ideally this should include the previous data + new observations in the samedata.frame
.- now
An object of datatype
Date
indicating the date at which to perlform the nowcast.- refresh
Refresh parameter for
rstan::sampling()
- ...
Additional arguments to pass to
rstan::sampling()
Examples
# Load the data
data(denguedat)
# Run a nowcast using the first 1000 data points
first_1k <- denguedat[1:1000,]
ncast <- nowcast(first_1k, "onset_week", "report_week",
method = "optimization", seed = 2495624, iter = 10, refresh = 0)
ncast
#>
#> ── Nowcast for 1990-11-12 ──
#>
#> • Column with `true_date` = "onset_week"
#> • Column with `report_date` = "report_week"
#> • units = "weeks"
#>
#> ── Epidemic effects:
#> The following effects are in place:
#> • week_of_year
#>
#> ── Delay effects:
#> No temporal effects are considered
#>
#> Use the `summary` function to obtain the summary of predictions or `plot` to
#> generate an image
#>
#Update the nowcast now that new information was acquired
first_3k <- denguedat[1:3000,]
update(ncast, new_data = first_3k)
#> ── Nowcast for 1991-10-14 ──
#>
#> • Column with `true_date` = "onset_week"
#> • Column with `report_date` = "report_week"
#> • units = "weeks"
#>
#> ── Epidemic effects:
#> The following effects are in place:
#> • week_of_year
#>
#> ── Delay effects:
#> No temporal effects are considered
#>
#> Use the `summary` function to obtain the summary of predictions or `plot` to
#> generate an image
#>