Skip to contents

Assign random priors. This is mostly used with the simulate_disease() function.

Usage

random_priors(...)

Arguments

...

Any parameter used in set_priors() that will remain fixed (not random).

Examples

#Get random priors
random_priors()
#> $mu_intercept_param_1
#> [1] 0.1496794
#> 
#> $mu_intercept_param_2
#> [1] 0.4333211
#> 
#> $mu_0_param_1
#> [1] -0.01030332
#> 
#> $mu_0_param_2
#> [1] 0.787764
#> 
#> $nu_intercept_param_1
#> [1] -0.9063402
#> 
#> $nu_intercept_param_2
#> [1] 1.102152
#> 
#> $nu_0_param_1
#> [1] 1.89336
#> 
#> $nu_0_param_2
#> [1] 0.03187416
#> 
#> $c_0_param_1
#> [1] -0.102603
#> 
#> $c_0_param_2
#> [1] 1.23996
#> 
#> $ctilde_0_param_1
#> [1] 0.06089889
#> 
#> $ctilde_0_param_2
#> [1] 1.177576
#> 
#> $sd_mu_param_1
#> [1] 0.1178601
#> 
#> $sd_mu_param_2
#> [1] 1.112295
#> 
#> $sd_nu_param_1
#> [1] 0.007886198
#> 
#> $sd_nu_param_2
#> [1] 2.877744
#> 
#> $sd_c_param_1
#> [1] 2.158757
#> 
#> $sd_c_param_2
#> [1] 1.709715
#> 
#> $sd_ctilde_param_1
#> [1] 0.7669834
#> 
#> $sd_ctilde_param_2
#> [1] 0.6917886
#> 
#> $sd_m_param_1
#> [1] 1.012002
#> 
#> $sd_m_param_2
#> [1] 0.0809484
#> 
#> $sd_dow_epi_param_1
#> [1] 0.5633801
#> 
#> $sd_dow_epi_param_2
#> [1] 1.322483
#> 
#> $sd_wkend_epi_param_1
#> [1] 0.3666744
#> 
#> $sd_wkend_epi_param_2
#> [1] 2.129835
#> 
#> $sd_dom_epi_param_1
#> [1] 0.9414981
#> 
#> $sd_dom_epi_param_2
#> [1] 1.217838
#> 
#> $sd_month_epi_param_1
#> [1] 1.415412
#> 
#> $sd_month_epi_param_2
#> [1] 0.616267
#> 
#> $sd_week_epi_param_1
#> [1] 0.1740864
#> 
#> $sd_week_epi_param_2
#> [1] 0.7782555
#> 
#> $sd_holidays_epi_param_1
#> [1] 1.009529
#> 
#> $sd_holidays_epi_param_2
#> [1] 1.480725
#> 
#> $dof
#> [1] 7
#> 
#> $control_k_transform
#> [1] 2
#> 
#> $control_c_transform
#> [1] 0.5
#> 

#Get random priors except for mu_0_param_1 which is fixed at 1 and nu_0_param_2 fixed at 0.5
random_priors(mu_0_param_1 = 1, nu_0_param_2 = 0.5)
#> $mu_intercept_param_1
#> [1] 1.604407
#> 
#> $mu_intercept_param_2
#> [1] 0.5150245
#> 
#> $mu_0_param_1
#> [1] -1.416024
#> 
#> $mu_0_param_2
#> [1] 1.876777
#> 
#> $nu_intercept_param_1
#> [1] 0.6241324
#> 
#> $nu_intercept_param_2
#> [1] 3.112277
#> 
#> $nu_0_param_1
#> [1] -0.3561244
#> 
#> $nu_0_param_2
#> [1] 0.06446421
#> 
#> $c_0_param_1
#> [1] 1.077117
#> 
#> $c_0_param_2
#> [1] 2.181576
#> 
#> $ctilde_0_param_1
#> [1] 0.1983921
#> 
#> $ctilde_0_param_2
#> [1] 0.5995948
#> 
#> $sd_mu_param_1
#> [1] 0.6161543
#> 
#> $sd_mu_param_2
#> [1] 2.974157
#> 
#> $sd_nu_param_1
#> [1] 1.884662
#> 
#> $sd_nu_param_2
#> [1] 0.5886205
#> 
#> $sd_c_param_1
#> [1] 0.5399232
#> 
#> $sd_c_param_2
#> [1] 0.1694615
#> 
#> $sd_ctilde_param_1
#> [1] 0.559106
#> 
#> $sd_ctilde_param_2
#> [1] 0.8193472
#> 
#> $sd_m_param_1
#> [1] 0.393344
#> 
#> $sd_m_param_2
#> [1] 1.042134
#> 
#> $sd_dow_epi_param_1
#> [1] 1.179664
#> 
#> $sd_dow_epi_param_2
#> [1] 0.7430788
#> 
#> $sd_wkend_epi_param_1
#> [1] 1.056336
#> 
#> $sd_wkend_epi_param_2
#> [1] 1.198777
#> 
#> $sd_dom_epi_param_1
#> [1] 0.6505336
#> 
#> $sd_dom_epi_param_2
#> [1] 1.343913
#> 
#> $sd_month_epi_param_1
#> [1] 1.477532
#> 
#> $sd_month_epi_param_2
#> [1] 1.072026
#> 
#> $sd_week_epi_param_1
#> [1] 2.126445
#> 
#> $sd_week_epi_param_2
#> [1] 0.4761969
#> 
#> $sd_holidays_epi_param_1
#> [1] 0.4078885
#> 
#> $sd_holidays_epi_param_2
#> [1] 2.393978
#> 
#> $mu_0_param_1
#> [1] 1
#> 
#> $nu_0_param_2
#> [1] 0.5
#> 
#> $dof
#> [1] 7
#> 
#> $control_k_transform
#> [1] 2
#> 
#> $control_c_transform
#> [1] 0.5
#>