
Print or show a potential impact fraction
print.Rd
Function to print or show a potential impact fraction object
Function to print or show a covariance_structure_class
Examples
my_pif <- pif(p = 0.2, beta = 1.3, var_beta = 0.1)
#> ! Assuming parameters `p` have no variance Use `var_p` to input their link_variances and/or covariance
print(my_pif)
#>
#> ── Potential Impact Fraction: [deltapif-124126307530705] ──
#>
#> PIF = 34.805% [95% CI: 12.300% to 51.535%]
#> standard_deviation(pif %) = 9.864
# Change the ammount of digits to show just 1
print(my_pif, accuracy = 0.1)
#>
#> ── Potential Impact Fraction: [deltapif-124126307530705] ──
#>
#> PIF = 34.8% [95% CI: 12.3% to 51.5%]
#> standard_deviation(pif %) = 9.9
pif_lead_women <- paf(0.27, 2.2, quiet = TRUE, var_p = 0.001, var_beta = 0.015,
label = "Women lead")
pif_rad_women <- paf(0.12, 1.2, quiet = TRUE, var_p = 0.001, var_beta = 0.022,
label = "Women radiation")
pif_women <- pif_ensemble(pif_lead_women, pif_rad_women, label = "Women",
weights = c(0.8, 0.72),
var_weights = matrix(c(0.3, 0.1, 0.1, 0.4), ncol = 2))
pif_lead_men <- paf(0.30, 2.2, quiet = TRUE, var_p = 0.001, var_beta = 0.015,
label = "Men lead")
pif_rad_men <- paf(0.10, 1.2, quiet = TRUE, var_p = 0.001, var_beta = 0.022,
label = "Men radiation")
pif_men <- pif_ensemble(pif_lead_men, pif_rad_men, label = "Men",
weights = c(0.65, 0.68),
var_weights = matrix(c(0.1, -0.2, -0.2, 0.5), ncol = 2))
pif_tot <- pif_total(pif_men, pif_women,
weights = c(0.49, 0.51), label = "Population",
var_weights = matrix(c(0.22, 0.4, 0.4, 0.8), ncol = 2))
print(covariance_structure(pif_lead_women))
#> Women lead
#> Women lead .
print(covariance_structure2(pif_lead_women, pif_lead_men))
#> Women lead Men lead
#> Women lead . .
#> Men lead . .
print(default_weight_covariance_structure2(pif_men, pif_women))
#> Men Men lead Men radiation Women Women lead Women radiation
#> Men 2x2 . . . . .
#> Men lead . . . . . .
#> Men radiation . . . . . .
#> Women . . . 2x2 . .
#> Women lead . . . . . .
#> Women radiation . . . . . .
print(default_parameter_covariance_structure(pif_tot, parameter = "beta"))
#> Population Men Men lead Men radiation Women Women lead
#> Population . . . . . .
#> Men . . . . . .
#> Men lead . . 0.015 . . 0.015
#> Men radiation . . . 0.022 . .
#> Women . . . . . .
#> Women lead . . 0.015 . . 0.015
#> Women radiation . . . 0.022 . .
#> Women radiation
#> Population .
#> Men .
#> Men lead .
#> Men radiation 0.022
#> Women .
#> Women lead .
#> Women radiation 0.022