
Attributable cases
casecalc.Rd
Calculates the number of attributable cases or the number of cases
that would be averted under a counterfactual scenario for a
given fraction (either paf
or pif
).
Usage
averted_cases(
cases,
pif,
variance = 0,
conf_level = 0.95,
link = "identity",
link_inv = NULL,
link_deriv = NULL
)
attributable_cases(
cases,
paf,
variance = 0,
conf_level = 0.95,
link = "identity",
link_inv = NULL,
link_deriv = NULL
)
Arguments
- cases
The overall number of cases in the population.
- pif
A potential impact fraction object created by
pif
,paf
,pif_total
,pif_ensemble
,paf_total
orpaf_ensemble
.- variance
The estimated variance for the cases (default = 0).
- conf_level
Confidence level for the confidence interval (default 0.95).
- link
Link function such that the case confidence intervals stay within the expected bounds (either
logit
oridentity
).- link_inv
The inverse of
link
. For example iflink
islogit
this should beinv_logit
.- link_deriv
Derivative of the
link
function. The function tries to build it automatically fromlink
usingDeriv::Deriv()
.- paf
A population attributable fraction object created by
paf
,paf_total
orpaf_ensemble
.
Formulas
The attributable cases are calculated as: $$ \text{Attributable cases} = \textrm{PAF} \times \textrm{Cases} $$ and the averted cases are respectively: $$ \text{Averted cases} = \textrm{PIF} \times \textrm{Cases} $$
The variance is estimated using the product-variance formula: $$ \textrm{Var}[\text{Averted cases}] = \sigma^2_{\textrm{Cases}} \cdot \big( \textrm{PIF}\big)^2 + \sigma^2_{\textrm{PIF}} \cdot \big( \textrm{Cases} \big)^2 + \sigma^2_{\textrm{PIF}} \cdot \sigma^2_{\textrm{Cases}} $$
Examples
frac <- paf(p = 0.499, beta = log(3.6), var_p = 0.002, var_beta = FALSE)
attributable_cases(100, paf = frac)
#>
#> ── Attributable cases: [deltapif-275541757533686] ──
#>
#> Attributable cases = 56.473 [95% CI: 52.155 to 60.790]
#> standard_deviation(attributable cases) = 220.300
frac <- pif(p = 0.499, beta = log(3.6), p_cft = 0.1, var_p = 0.002, var_beta = FALSE)
averted_cases(100, pif = frac)
#>
#> ── Averted cases: [deltapif-00465313804441933] ──
#>
#> Averted cases = 45.155 [95% CI: 39.715 to 50.596]
#> standard_deviation(averted cases) = 277.578