Skip to contents

Calculates the number of attributable cases or the number of cases that would be averted under a counterfactual scenario for a given fraction (either paf or pif).

Usage

averted_cases(
  cases,
  pif,
  variance = 0,
  conf_level = 0.95,
  link = "identity",
  link_inv = NULL,
  link_deriv = NULL
)

attributable_cases(
  cases,
  paf,
  variance = 0,
  conf_level = 0.95,
  link = "identity",
  link_inv = NULL,
  link_deriv = NULL
)

Arguments

cases

The overall number of cases in the population.

pif

A potential impact fraction object created by pif, paf, pif_total, pif_ensemble, paf_total or paf_ensemble.

variance

The estimated variance for the cases (default = 0).

conf_level

Confidence level for the confidence interval (default 0.95).

Link function such that the case confidence intervals stay within the expected bounds (either logit or identity).

The inverse of link. For example if link is logit this should be inv_logit.

Derivative of the link function. The function tries to build it automatically from link using Deriv::Deriv().

paf

A population attributable fraction object created by paf, paf_total or paf_ensemble.

Value

A cases_class object with the attributable cases.

Details

Negative cases are interpreted as cases that would be caused by the intervention.

Formulas

The attributable cases are calculated as: $$ \text{Attributable cases} = \textrm{PAF} \times \textrm{Cases} $$ and the averted cases are respectively: $$ \text{Averted cases} = \textrm{PIF} \times \textrm{Cases} $$

The variance is estimated using the product-variance formula: $$ \textrm{Var}[\text{Averted cases}] = \sigma^2_{\textrm{Cases}} \cdot \big( \textrm{PIF}\big)^2 + \sigma^2_{\textrm{PIF}} \cdot \big( \textrm{Cases} \big)^2 + \sigma^2_{\textrm{PIF}} \cdot \sigma^2_{\textrm{Cases}} $$

See also

Examples

frac <- paf(p = 0.499, beta = log(3.6), var_p = 0.002, var_beta = FALSE)
attributable_cases(100, paf = frac)
#> 
#> ── Attributable cases: [deltapif-275541757533686] ──
#> 
#> Attributable cases = 56.473 [95% CI: 52.155 to 60.790]
#> standard_deviation(attributable cases) = 220.300

frac <- pif(p = 0.499, beta = log(3.6), p_cft = 0.1, var_p = 0.002, var_beta = FALSE)
averted_cases(100, pif = frac)
#> 
#> ── Averted cases: [deltapif-00465313804441933] ──
#> 
#> Averted cases = 45.155 [95% CI: 39.715 to 50.596]
#> standard_deviation(averted cases) = 277.578