Joint PIF/PAF type
overall_fraction_type.Rd
Function that determines whether a collection of potential impact fractions or population attributable fractions are pif or paf
Value
A pif_aggregated
object estimating the potential impact fraction for
individual-level data from multiple distinct impact fractions.
Examples
# Use the ensanut dataset
data(ensanut)
# EXAMPLE 1
# Setup the survey design
options(survey.lonely.psu = "adjust")
design <- survey::svydesign(data = ensanut, ids = ~1, weights = ~weight, strata = ~strata)
rr_1 <- function(X, theta) {
exp(-2 +
theta[1] * X[, "age"] + theta[2] * X[, "systolic_blood_pressure"] / 100)
}
rr_2 <- function(X, theta) {
exp(-1 +
theta[1] * X[, "age"] )
}
rr_3 <- function(X, theta) {
exp(-3 +
theta[1] * X[, "age"] )
}
cft <- function(X) {
X[, "systolic_blood_pressure"] <- X[, "systolic_blood_pressure"] - 5
return(X)
}
pif_1 <- pif(design,
theta = log(c(1.25, 1.68)), rr_1, cft,
additional_theta_arguments = c(0.01, 0.03), n_bootstrap_samples = 10,
)
pif_2 <- pif(design,
theta = log(c(1.12, 1.45)), rr_2, cft,
additional_theta_arguments = c(0.02, 0.025), n_bootstrap_samples = 10,
)
pif_3 <- pif(design,
theta = log(c(2.25, 2.57)), rr_3, cft,
additional_theta_arguments = c(0.01, 0.025), n_bootstrap_samples = 10,
)
overall_fraction_type(pif_1, pif_2, pif_3)
#> [1] "Potential Impact Fraction (PIF)"