Get bootstrap simulations from pif
and paf
get_bootstrap_simulations.Rd
Returns the bootstrap simulations for pif
and paf
Examples
#Example 1
data(ensanut)
options(survey.lonely.psu = "adjust")
design <- survey::svydesign(data = ensanut, ids = ~1, weights = ~weight, strata = ~strata)
rr <- function(X, theta) {
exp(-2 +
theta[1] * X[, "age"] + theta[2] * X[, "systolic_blood_pressure"] / 100)
}
cft <- function(X) {
X[, "systolic_blood_pressure"] <- X[, "systolic_blood_pressure"] - 5
return(X)
}
pifsim <- pif(design,
theta = log(c(1.05, 1.38)), rr, cft,
additional_theta_arguments = c(0.01, 0.03), n_bootstrap_samples = 10,
)
get_bootstrap_simulations(pifsim)
#> potential_impact_fraction average_relative_risk
#> result.1 0.018602291 2.1635133
#> result.2 0.012191399 3.9309001
#> result.3 0.013969539 2.8501448
#> result.4 0.025763340 1079.4053898
#> result.5 0.011599829 11.1565398
#> result.6 0.006881619 0.2263781
#> result.7 0.009452571 2.6595716
#> result.8 0.025531238 166.0541858
#> result.9 0.007304812 577.7690080
#> result.10 0.012049900 161.2211139
#> average_counterfactual counterfactual relative_risk
#> result.1 2.1232670 Counterfactual_1 Relative_Risk_1
#> result.2 3.8829769 Counterfactual_1 Relative_Risk_1
#> result.3 2.8103295 Counterfactual_1 Relative_Risk_1
#> result.4 1051.5963012 Counterfactual_1 Relative_Risk_1
#> result.5 11.0271259 Counterfactual_1 Relative_Risk_1
#> result.6 0.2248202 Counterfactual_1 Relative_Risk_1
#> result.7 2.6344318 Counterfactual_1 Relative_Risk_1
#> result.8 161.8146169 Counterfactual_1 Relative_Risk_1
#> result.9 573.5485140 Counterfactual_1 Relative_Risk_1
#> result.10 159.2784155 Counterfactual_1 Relative_Risk_1